ar X iv : 0 80 1 . 02 89 v 1 [ m at h . L O ] 1 J an 2 00 8 Is Randomness “ native ” to Computer Science ?
نویسنده
چکیده
1 From probability theory to Kolmogorov complexity 3 1.1 Randomness and Probability theory . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Intuition of finite random strings and Berry’s paradox . . . . . . . . . . . . 5 1.3 Kolmogorov complexity relative to a function . . . . . . . . . . . . . . . . . 6 1.4 Why binary programs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 What about other possible outputs? . . . . . . . . . . . . . . . . . . . . . . 8
منابع مشابه
ar X iv : a st ro - p h / 02 10 42 8 v 1 1 8 O ct 2 00 2 Star Clusters in Interacting Galaxies : The Case of M 51 Nate
متن کامل
ar X iv : 0 80 3 . 44 39 v 1 [ m at h . D S ] 3 1 M ar 2 00 8 PERIODIC UNIQUE BETA - EXPANSIONS : THE SHARKOVSKIĬ ORDERING
Let β ∈ (1, 2). Each x ∈ [0, 1 β−1 ] can be represented in the form
متن کاملar X iv : 0 80 7 . 00 58 v 1 [ m at h . D G ] 1 J ul 2 00 8 EQUIVARIANT DIFFERENTIAL CHARACTERS AND SYMPLECTIC REDUCTION
We describe equivariant differential characters (classifying equi-variant circle bundles with connections), their prequantization, and reduction.
متن کاملar X iv : 0 80 7 . 00 58 v 2 [ m at h . D G ] 1 6 Ju l 2 00 8 EQUIVARIANT DIFFERENTIAL CHARACTERS AND SYMPLECTIC REDUCTION
We describe equivariant differential characters (classifying equi-variant circle bundles with connections), their prequantization, and reduction.
متن کاملar X iv : h ep - p h / 02 10 07 4 v 1 4 O ct 2 00 2 Effective vertex for π 0 γγ §
The π 0 γγ vertex is used as an explicit example of the subtleties connected with the application of equation of motion within Chiral Perturbation Theory at the order O(p 6).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008